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Abstract

The goal purchased in this paper is to implement an experimental bench allowing the measurement of the thermal

diffusivity and conductivity of liquids. The principle of the measurement based on a pulsed method is presented. The

entire problem is solved through the thermal quadrupoles method. Then, the parameters estimation problem that is

specially difficult in this case due to the presence of the walls of the measurement cell is described and an optimal thick-

ness for these walls is defined from a sensitivity study. Finally, we show how it is possible to take into account the radi-

ative transfer within the fluid in the estimation problem, before presenting the set-up and some experimental results.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In a keynote lecture [1], we have already presented

the general problems for the measurement of the thermal

conductivity and diffusivity of liquids. The problems re-

lated to the coupling of conduction with convective and

radiative heat transfers have been specially investigated.

First ones have been solved by a judicious choice of the

measurement cell geometry. The others by taking into

account the radiative heat transfer (when it cannot be
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neglected) in the fluid layer. In this paper, a particular

attention will be given to the parameter estimation prob-

lem, first in a pure conductive regime and then by taking

into account the conductive–radiative coupling, in a

three-layer system where the properties of the intermedi-

ate layer are unknown.
2. Measurement of the thermophysical properties of

liquids

2.1. Principle of the measurement

Contrary to the classical hot-wire method [2–5],

we have chosen to implement a pulsed method, which
ed.
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Fig. 1. Principle of the measurement (cylindrical geometry).

Nomenclature

A, B, C, D quadrupole coefficients

a thermal diffusivity (m2 s�1)

c specific heat (J kg�1 K�1)

e thickness (m)

E expected value of a given parameter

f theoretical thermogram (model)

h Heat losses (W m�2 K�1)

p Laplace variable (s�1)

Q pulse energy (J)

S unit area (m2)—objective function

t time (s)

T temperature (K)

x coordinate

X sensitivity coefficient

Y experimental thermogram (measured)

V variance of a given parameter

Greek symbols

b parameter

e random noise

u heat flux (W)

/ Laplace transform of the heat flux

k thermal conductivity (W m�1 K�1)

q volumic mass (kg m�3)

h Laplace transform of the temperature

Subscripts

i related to a medium or time

j related to a parameter

l related to the liquid

w related to the wall

1 infinity

Superscripts

n related to noise

r related to radiative quantities

* dimensionless quantity
^ estimated values
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presents the advantage of allowing us to work in a pseu-

do-conduction regime where heat transfer within the

fluid is not influenced by convection. The principle of

this method is presented in Fig. 1. The liquid is confined

between two metallic and coaxial cylindrical cylinders

submitted to a heat pulsed stimulation on the inner face

of the interior cylinder. The temperature is measured on

the outer face of the external cylinder (technique known

as a ‘‘back-face’’ measurement).

In this paper, we assume a purely conductive

transfer.

To simplify calculations, we consider a cartesian

coordinates system. Indeed, the thicknesses of the three

layers being small compared to their radii, particularly

for an aspect ratio lower than 0.1, it is possible to show

that the differences between the temperatures calculated

in cartesian and cylindrical coordinates are lower than

0.01%.

2.2. Direct model

The problem is described in Fig. 2.

The implementation of the analytical model is simpli-

fied by the use of thermal quadrupoles [6].

After a Laplace transform on the problem, our model

is given by a chain of quadrupoles. A diagram of the

system is given in Fig. 3 with

• 1/hS being the convective resistance (heat losses with

the surroundings),
• A, B, C and D being the coefficients of the inverse

transfer matrices for the walls and the liquid.



Fig. 2. Model.
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Their expressions are given by

Ai ¼ Di ¼ cosh

ffiffiffiffiffiffiffi
pe2i
ai

s0
@

1
A

Bi ¼
1

kiS
ffiffiffi
p
ai

q sinh

ffiffiffiffiffiffiffi
pe2i
ai

s0
@

1
A

and

Ci ¼ kiS
ffiffiffiffi
p
ai

r
sinh

ffiffiffiffiffiffiffi
pe2i
ai

s0
@

1
A

ð1Þ

(lowerscript i indifferently refers to the fluid or to the

wall) and

ei thickness of the material

ai thermal diffusivity

ki thermal conductivity

The rear-face temperature h(p) is then given by

hðpÞ ¼ /ðpÞ
Cþ 2AhS þ BðhSÞ2

ð2Þ
Fig. 3. Quadrupole
A, B and C represent the coefficients of the transfer

matrix obtained by taking the product of the transfer

matrices for the three materials:

A B

C A

	 

¼

Aw Bw

Cw Aw

	 

Al Bl

Cl Al

	 

Aw Bw

Cw Aw

	 

ð3Þ

with

A ¼ ðAwAl þ BwClÞAw þ ðAwBl þ BwAlÞCw

B ¼ ðAwAl þ BwClÞBw þ ðAwBl þ BwAlÞAw

C ¼ ðCwAl þ AwClÞAw þ ðCwBl þ AwAlÞCw

By assuming that the heat pulse u(t) received by the sys-

tem is infinitely short in time (Dirac of flux), then /(p)
is a constant equal to the energy of the pulse.

For h = 0, the temperature at long times is obtained

by

T1 ¼ lim
t!1

T ðtÞ ¼ lim
p!0

phðpÞ ð4Þ

Thus,

T1 ¼ lim
p!0

p/ðpÞ
CðpÞ ð5Þ

and

T1 ¼ Q
Sð2qcwew þ qclelÞ

ðT1 is called the adiabatic temperatureÞ ð6Þ
In general case (for any t), the inverse Laplace transform

of relation (2) is implemented numerically. We use sev-

eral algorithms that give the same results, either the

Stehfest algorithm [7], the De Hoog algorithm [8] or a

numerical Inverse Fast Fourier Transform (I.F.F.T.) [9].

Fig. 4 gives an example of results obtained for two

liquids (water and oil) and two different walls thick-

nesses (0.5 mm and 2 mm). The thermophysical proper-

ties used for the simulations are

• el = 4.5 mm, h = 5 W m�2 K�1

• Water: kl=0.597 W m�1 K�1, al = 1.43 · 10�7 m2 s�1

• Oil: kl = 0.132 W m�1 K�1, al = 7.33 · 10�8 m2 s�1

• Walls (copper): kw = 395 W m�1 K�1, aw = 1.15 ·
10�4 m2 s�1

• ew = 0.5 or 2 mm

• Q/S = 4 · 104 J m�2
representation.
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Fig. 4. Simulation examples (pulsed responses).
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3. Parameters estimation

3.1. Sensitivity study

The model depends on different parameters. Some of

them are supposed to be exactly known and the others

will be identified. The initial goal is to thermally charac-

terize the fluid, i.e. to estimate two quantities, its thermal

diffusivity and conductivity (or any other set of param-

eters as the effusivity or the specific heat). Assuming that

the thermal properties of the walls and the geometry of

the system are known, the model is a function of four

unknown parameters:

• el=
ffiffiffiffi
al

p

• el/kl
• Q/S

• h

The question is to know if it is possible to estimate

simultaneously from an experimental thermogram the

four above mentioned parameters. The problem comes

from the measurement noise, which involves errors in

the estimated parameters that must be quantified. Beck

and Arnold [10] showed that one of the most powerful

tools for that is the sensitivity study, associated with a

stochastical approach.

Let b = (b1, b2, b3, b4) be the vector of unknown

parameters, the temperature field can be formally writ-

ten as

T ¼ f ðt; b1; b2; b3; b4Þ ¼ f ðt; bÞ ð7Þ

The measured temperature being disturbed, one can

write by assuming an additive noise:

Y i ¼ T ðti; bÞ þ ei ð8Þ
ei being the random noise, associated with the measure-

ment Yi at the time ti.

The sensitivity coefficient of the field T to parameter

bj at the time t is defined by

X jðt; bÞ ¼
oT
obj

ðt; bÞ ð9Þ

Thereafter, we will use the reduced sensitivity coeffi-

cients, which are easier to compare (they have the same

dimension as the field T):

X 

j ðt; bÞ ¼ bj

oT
obj

ðt; bÞ ð10Þ

The sensitivity curves give us informations in the estima-

tion error (the error is small when the sensitivity coeffi-

cient is maximum) and in the possible correlations

between parameters. The parameters are correlated if

their sensitivity coefficients are proportional. In this

case, it is not possible to estimate these parameters

simultaneously.

The estimation problem is non-linear. Thus, the sen-

sitivity curves and consequently the estimation will

depend on the nominal values of the unknown parame-

ters but also on the known parameters and on the geo-

metry of the system. This is the reason why for

instance, an optimum on the walls thicknesses exists.

As an example, Fig. 5 gives the sensitivity curves for

water and oil with 0.5 mm and 2 mm walls thicknesses

respectively.

The whole curves seem to show that some parameters

are more or less correlated, particularly b1ðel=
ffiffiffiffi
al

p Þ and
b3(Q/S) or b1 and b2(el/kl), which would not allow the

simultaneous estimation of these parameters and conse-

quently of the thermal diffusivity. In addition, one can

notice that for time higher than twice of the maximum,

the parameters are strongly correlated. Indeed, one is in

the case of the cooling of a system with a quasi-uniform

temperature. The thermogram is a pure decreasing expo-

nential, which only depends on one parameter, the time-

constant of the system h/(2qcwew + qclel). This remark

leads us to limit the estimation interval to short times.

We have chosen to work between t = 0 and t = 1.5tmax.

The significant number of parameters (4) and the

cross correlations between them make difficult the read-

ing and the interpretation of the sensitivity curves. The

stochastical study and the simplified study in the follow-

ing paragraphs will allow to specify the problem.

3.2. Stochastical approach

An efficient method to estimate the unknown para-

meters consists in using an inverse technique based on

the previous analytical model. The method we use is

based on the Nonlinear Gauss–Newton�s Ordinary Least

Squares method that consists in finding suitable values
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Fig. 5. Sensitivity curves for water and oil (0.5 mm and 2 mm).
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for the unknown parameters introduced in the model to

minimize by an iterative process the differences between

the experimental and theoretical curves. Let S be the

sum of the ordinary squared differences:

S ¼
X
i

ðY i � T ðti; bÞÞ2 ð11Þ

Y represents the experimental thermogram, T the theo-

retical thermogram as a function of the time t and un-

known parameters b. The subscript i refers to the time

ti. Minimizing S with respect to bj is equivalent to make

its derivatives equal to zero:

oS
obj

¼ 0 )
X
i

oT ðt; bÞ
obj

ðY i � T ðti; bÞÞ ¼ 0 ð8jÞ

ð12Þ
The sensitivity coefficient Xj(t, b) given by (9) naturally

appears in this minimization. Thus, the observation of

the sensitivity curves allows us to know if the model

we use is suitable or not to measure the parameter we

seek. By a linear expansion of the model around the

solution, one can obtain an analytical relation between

the estimated values b̂ of the parameters and their real

values b that is given by

b̂ ¼ b þ ðX tX Þ�1X teðtÞ ð13Þ

e(t) being the noise at time t.

From this relation, one shows that

Eðb̂Þ ¼ b

: expected values of parameters ðunbiased estimatorÞ
ð14Þ



Table 1

Variance–covariance matrices

Water—0.5 mm Water—2 mm

0.3394 �2.3464 2.4913 1.4724 0.3218 �0.8419 0.7528 �0.5216

2.3464 16.5302 �17.4179 �9.4267 �0.8419 2.4531 �2.0146 2.5528

2.4913 �17.4179 18.4144 10.4120 0.7528 �2.0146 1.7770 �1.3092

1.4724 �9.4267 10.4120 9.7216 �0.5216 2.5528 �1.3092 8.7357

Oil—0.5 mm Oil—2 mm

0.0649 �0.2870 0.2533 0.1216 0.1920 �0.4540 0.1500 �0.2349

�0.2870 1.3529 �1.1408 �0.4388 �0.4540 1.3544 �0.2825 1.0794

0.2533 �1.1408 0.9958 0.4599 0.1500 �0.2825 0.1413 �0.0219

0.1216 �0.4388 0.4599 0.3979 �0.2349 1.0794 �0.0219 1.4113

Table 2

Correlation matrices

Water—0.5 mm Water—2 mm

1.0000 �0.9907 0.9966 0.8106 1.0000 �0.9476 0.9954 �0.3111

�0.9907 1.0000 �0.9983 �0.7436 �0.9476 1.0000 �0.9649 0.5514

0.9966 �0.9983 1.0000 0.7782 0.9954 �0.9649 1.0000 �0.3323

0.8106 �0.7436 0.7782 1.0000 �0.3111 0.5514 �0.3323 1.0000

Oil—0.5 mm Oil—2 mm

1.0000 �0.9685 0.9965 0.7569 1.0000 �0.8903 0.9104 �0.4512

�0.9685 1.0000 �0.9829 �0.5981 �0.8903 1.0000 �0.6457 0.7807

0.9965 �0.9829 1.0000 0.7305 0.9104 �0.6457 1.0000 �0.0491

0.7569 �0.5981 0.7305 1.0000 �0.4512 0.7807 �0.0491 1.0000
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V ðb̂Þ ¼ r2
nðX tX Þ�1 ¼ r2

n

VarðbiÞ Covðbi;bjÞ
Covðbi;bjÞ VarðbjÞ

" #

: covariance matrix ðrn: standard deviation of noiseÞ
ð15Þ

The previous relation is very important because it allows

to evaluate the errors in the estimated parameters. It

also clearly shows that if the signal is not corrupted by

the measurement noise, then one can expect to estimate

the unknown parameters with a high accuracy, even if

their effects on the signal are strongly coupled. In con-

trast, in the case of a noised signal, errors in the esti-

mated parameters values directly depend on the noise

level, especially if they are strongly coupled. To know

if the parameters that are estimated from the iterative

process really correspond to the thermophysical proper-

ties of the material, it is also of a great interest to com-

pute the correlation factors between parameters bi and bj
that are defined by

qðbi; bjÞ ¼
Covðbi; bjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðbiÞ 
 VarðbjÞ
q ð16Þ

The estimation will be as much accurate than the vari-

ances are small and the correlation coefficients far from
unity. The covariance and correlation matrices corre-

sponding to the four preceding parameters are given in

Tables 1 and 2. To be compared, the tables are calcu-

lated from the reduced sensitivities.

From the covariance matrices, one can notice that

the variance on b1 is the smallest one, which shows

that the thermal diffusivity will be better identified

than the thermal conductivity. In the same way, the

estimation will be better for oil than for water. Later

on, one will consider water as a test fluid because re-

sults are better for less conducting fluids. Finally,

one can observe that the variances strongly vary with

the thickness of the walls, which will thus have to be

optimized.

From the correlation matrices, one can note that in

most cases b3 is correlated with b1 and b2, particularly
for water, which confirms the preceding results. In the

case 4, one can notice that no parameter are correlated.

Thus, it is possible to estimate a and k at the same time,

if the thickness of the walls is chosen in an optimal

way.

One can also notice that the estimation problem is

strongly nonlinear since the four studied cases exhibit

some covariance and correlation matrices very different

between each others.
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3.3. Simplified study with two parameters

To simplify, let consider the case with no heat loss

(h = 0). The heat losses being uncorrelated at short times

with the other parameters (until the maximum of the

thermogram), the introduction of the heat exchanges

will only have thereafter few effects in the estimation

of the two parameters of interest.

To get rid of the influence of the parameter Q/S, we

will work with the reduced thermogram defined by

hðt; b1; b2Þ ¼
T ðt; b1; b2; b3Þ
Tmaxðb2; b3Þ

ð17Þ

The four examples previously presented are given in Fig.

6 and Table 3. In some cases, the correlation between the

parameters b1 and b2 is large (greater than 0.99). The
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Fig. 6. Reduced thermograms and sensitivity cu
first idea is to seek a new couple of parameters, which

would be less correlated and thus could be estimated

in better conditions.

3.4. Parameters substitution

The model we developed makes appear a natural

couple of parameters b1 and b2. It is then possible, by

a parameter substitution to introduce a new set of

parameters ba and bb such as

h ¼ f ðt; b1; b2Þ ¼ gðt; ba; bbÞ ð18Þ

The new parameters are functions of the old ones, that

is

ba ¼ faðb1; b2Þ ð19Þ
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Table 3

Covariance and correlation matrices

Water Oil

0.5 mm 2 mm 0.5 mm 2 mm

Covariance

0.5007 �3.0373 0.2369 �0.4378 0.1911 �0.5548 0.1977 �0.1851

�3.0373 18.6223 �0.4378 0.8622 �0.5548 1.6662 �0.1851 0.1979

Correlation

1.0000 �0.9947 1.0000 �0.9688 1.0000 �0.9832 1.0000 �0.9358

�0.9947 1.0000 �0.9688 1.0000 �0.9832 1.0000 �0.9358 1.0000
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bb ¼ fbðb1; b2Þ ð20Þ

Sensitivities to the new parameters Xa and Xb can be

written as a function of the old ones X1 and X2 (it is

the same for reduced sensitivities, variances and

covariances).

One obtains

• for the reduced sensitivities:

X 

ab ¼ X 


12.J

�1 ð21Þ

with

J 
 ¼

b1

ba

ofa
ob1

b2

ba

ofa
ob2

b1

bb

ofb
ob1

b2

bb

ofb
ob2

2
664

3
775 X 


ab ¼ bX 

a X 


b c
X 


12 ¼ X 

1 X 


2½ �
ð22Þ

• for the covariance matrix:

VarðbaÞ Covðba; bbÞ
Covðba; bbÞ VarðbbÞ

	 


¼ J 
 

Varðb1Þ Covðb1; b2Þ

Covðb1; b2Þ Varðb2Þ

	 


 J 
t ð23Þ

It is then easy to show that if X1 and X2 are proportional

in a given interval (X1 = KX2) then Xa and Xb are also

correlated in this same interval (Xa = K 0Xb).

The interest of introducing a new set of parameters is

not to try to estimate the two parameters simultaneously

but to find the more sensitive parameter of the system by

nullify the sensitivity to the second parameter. Theoreti-

cally, it is possible to find a couple (ba, bb), which allows

to obtain this result. Nevertheless, in practice this

parameter must keep a physical meaning and remain

the same according to the nominal values of the param-

eters. In fact, the estimation problem being nonlinear,

the optimum parameter is not unique and in our case

varies with respect to the liquid we consider.

However, one can notice that the sensitivity to a

parameter varies according to the choice of the second

parameter, which would let think (if the parameters

are not completely correlated) that it is possible to
improve the estimation of a given parameter by associat-

ing it with a particular parameter. In fact, the variance

of a parameter and thus the error made in the estimated

value of this parameter is independent of the choice of

the second parameter.

More generally, one shows that the estimation of the

new parameters from the model written with this new set

of parameters is equivalent to calculate these new

parameters from the estimated values of the old ones.

That shows that the choice of the parameters to estimate

has no effect on the quality of the estimation.

In fact, the parameters substitution allows to make

appear a quantity, which can be measured indepen-

dently in another experiment and that can be then fixed

to its nominal value, which is equivalent to remove a

parameter in the estimation.

3.5. Choice of a model and parameters

Let us apply the preceding remarks to the four ther-

mograms in Fig. 6 and find a new set of parameters

under the form:

ba ¼ bm
1 bn

2

bb ¼ b2

�
ð24Þ

One obtains (for the reduced sensitivities)

J 
 ¼
m n

0 1

	 

ð25Þ

The new sensitivities are given by

X 

a ¼ 1

m X


1

X 

b ¼ X 


2 � n
m X



1

(
ð26Þ

One has to choose n/m in such a way that X 

b ’ 0.

Minimizing X 

b is equivalent to minimize the variance

of ba that is given by (see Appendix A for more

details):

VarðbaÞ ¼ m2 Varðb1Þ þ n2 Varðb2Þ þ 2nmCovðb1; b2Þ
ð27Þ
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Let fix m for example and take the derivative of Var(ba)

with respect to n/m:

VarðbaÞ
m2

¼ Varðb1Þ þ
n
m

� �2

Varðb2Þ þ 2
n
m
Covðb1; b2Þ

ð28Þ

This yields

oVarðbaÞ
oðn=mÞ ¼ 2

n
m
Varðb2Þ þ 2Covðb1; b2Þ ¼ 0 ð29Þ

That is

n
m
¼ �Covðb1; b2Þ

Varðb2Þ
ð30Þ
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Fig. 7. Sensitivity curves. Fluid (water) [ef = 4.5 mm, kf =
0.597 W m�1 K�1, al = 1.43 · 10�7 m2 s�1, qcl = 4.17 · 106 J m�3

K�1]; walls (copper) [ew = 1 mm, kw = 395W m�1 K�1,

aw = 1.15 · 10�4 m2 s�1, qcw = 3.43 · 106 J m�3 K�1]; h = 5 W

m�2 K�1, Q/S = 4 · 104 J m�2.

Table 4

Covariance and correlation matrices

Water—1 mm

4 parameters: el=
ffiffiffiffi
al

p
, qclel, Q/s and h

Covariance

0.2567 1.5697 1.0776 0.099

1.5697 9.8171 6.6809 �0.224

1.0776 6.6809 4.5673 0.159

0.0993 �0.2249 0.1590 4.900

Correlation

1.0000 0.9888 0.9952 0.088

0.9888 1.0000 0.9977 �0.032

0.9952 0.9977 1.0000 0.033

0.0886 �0.0324 0.0336 1.000
• for a 0.5 mm wall thickness:

– Water
n
m
¼ 1

6.13
’ 1

6

– Oil
n
m
¼ 1

3.00
’ � 1

3

• for a 2 mm wall thickness:

– Water
n
m
¼ 1

1.97
’ 1

2

– Oil
n
m
¼ 1

1.07
’ � 1

1

The values strongly depend on the nature of the fluid.

Thus, it is not possible to find only one solution for ba

allowing to nullify X 

b. In this case, the following proce-

dure cannot be applied and no change of parameters

allows us to improve the estimation. The only one solu-

tion in difficult cases, when the standard deviation of a

parameter is too large, is to fix this parameter to its

nominal value. This nominal value can be determined

through another experiment. In our case, rather than

to fix the thermal conductivity value (el/kl), one prefers

to work with the specific heat (qclel) that can be deter-

mined more easily by a calorimetric experiment:

b1 ¼ el=
ffiffiffiffi
al

p
and b2 ¼ qclel

Fig. 7 gives an example of sensitivity curves obtained

from the four parameters (el=
ffiffiffiffi
al

p
, qclel, Q/S and h)

and the three parameters (b2 being fixed in this case)

models.

Table 4 gives the corresponding covariance and cor-

relation matrices. One can observe that the variances

and the correlations are strongly improved when b2 is

fixed.
3 parameters (qclel fixed): el=
ffiffiffiffi
al

p
, Q/s and h

3 0.0057 0.0094 0.1353

9 0.0094 0.0208 0.3121

0 0.1353 0.3121 4.8955

7

6 1.0000 0.8596 0.8074

4 0.8596 1.0000 0.9777

6 0.8074 0.9777 1.0000

0
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4. Optimization of the walls thicknesses

The problem being non-linear, the estimation of b1
and b2 can be improved by an optimal choice of the

walls thickness that minimizes the variances of the

parameters. The deterioration of the signal/noise ratio

when the walls thicknesses are increasing is taken into

account in this optimization (the measurement noise

remaining constant, the amplitude of the measured tem-

perature is decreasing with the increasing of the thick-

ness of the walls).

The study is made on the reduced thermograms with

the three parameters model:

h ¼ f ðt; b1; b2; hÞ. ð31Þ
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Fig. 8. Optimization of the walls thicknesses (water and oil). Fluid (wat

qcl = 4.17 · 106 J m�3 K�1]; fluid (oil) [ef = 4.5 mm, kf = 0.132 W m�

(copper) [kw = 395 W m�1 K�1, aw = 1.15 · 10�4 m2 s�1, q cw = 3.43 ·
The results are given in Fig. 8 for water and oil

respectively.

At first sight, the results are quite surprising. Con-

trary to what one could imagine, the variances are larger

for small walls thicknesses.

Indeed, in this case, we should find the behaviour

of a monolayer material with a variance of 0.003 for

b1. By fixing b2 to its nominal value, one obtains this

value.

Thus, contrary to what one could think, the use of

thin walls does not improve the parameters estimation,

except if those are sufficiently thin to be neglected (this

case not being very useful in practice).

We are in the presence of three different behaviours

according to the walls thickness:
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er) [ef = 4.5 mm, kf = 0.597 W m�1 K�1, al = 1.43 · 10�7 m2 s�1,
1 K�1, al = 7.33 · 10�7 m2 s�1, qcl = 1.8 · 106 J m�3 K�1]; walls

106 J m�3 K�1]; h = 5 W m�2 K�1, Q/S = 4 · 104 J m�2.
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1. Lower than few microns, one is in presence of a

monolayer of fluid.

2. Between few microns and hundreds of microns, one

is in the presence of a homogeneous system, i.e. the

response is that of a homogeneous medium but with

an apparent diffusivity different from the diffusivity

of the fluid:

aap ¼
kap

qcap
ð32Þ

with

kap ¼ ðel þ 2ewÞ
el
kl

þ 2ew
kw

� ��

and

qcap ¼ ðqclel þ 2qcwewÞ=ðel þ 2ewÞ:

3. Above hundreds of microns, one is in the presence

of a non-homogeneous three-layer material.

From this, two strategies can be defined:

1. In the case 2, one estimates an apparent diffusivity by

the classical method (model with three parameters: a,

h and Q) and knowing the characteristics of the wall

and the specific heat of the fluid, one makes a

correction.

2. In the case 3, it exists an optimum for walls thickness

between 1 mm and 2 mm. One uses a model with four

parameters allowing to estimate a and qc of the

liquid, if the parameters b1 and b2 are uncorrelated

(assuming the characteristics of the wall to be

known).
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Fig. 9. Estimation on simulated thermograms by an Ordin

kf = 0.597 W m�1 K�1, al = 1.43 · 10�7 m2 s�1, qcl = 4.17 · 106 J m

al = 7.33 · 10�7 m2 s�1, qcl = 1.8 · 106 J m�3 K�1]; walls (copper)

qcw = 3.43 · 106 J m�3 K�1]; h = 5 W m�2 K�1, Q/S = 4 · 104 J m�2.
For practical reasons, particularly the rigidity of the

walls required to obtain a good centring of the cylinders,

we made the choice to work in the case 3.
5. Inverse problem

Initially, we test the effectiveness of our approach on

simulated thermograms. From the preceding model, one

calculates the theoretical temperature response of the

system and adds noise to obtain a simulated signal on

which the estimation will be carried out. Let notice that

the noise added to the signal presents a standard devia-

tion of ±0.005 �C, which corresponds to the experimen-

tal noise as we will see it in the last part.

The estimation program uses the Levenberg–Marqu-

ardt [11] algorithm. The objective function depends on

four parameters:

• b1 ¼ el=
ffiffiffiffi
al

p
(square root of the characteristic time

of the fluid)

• b2 = qclel (heat capacity of the fluid)

• Q/S (energy absorbed by the system per unit of area)

• h (convective heat transfer coefficient between the

walls and the surroundings)

We plotted the simulated curves and the theoretical

curves obtained from the estimated parameters, as well

as the residuals (differences between theoretical and

simulated curves).

We also calculated the covariance matrices as well as

the standard deviations of the estimators. Fig. 9 and

Table 5 give results for water and oil.
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ary Least Squares method. Fluid (water) [ef = 4.5 mm,
�3 K�1]; fluid (oil) [ef = 4.5 mm, kf = 0.132 W m�1 K�1,

[ew = 1 mm, kw = 395 W m�1 K�1, aw = 1.15 · 10�4 m2 s�1,



Table 5

Estimated values, covariance and correlation matrices (4 parameters)

4 parameters: el=
ffiffiffiffi
al

p
, qclel, Q/s and h

Water Oil

Parameters Parameters

Nominal Estimated Nominal Estimated

al = 1.43 · 10�7 m2 s�1 al = 1.417 · 10�7 m2 s�1 al = 7.33 · 10�7 m2 s�1 al = 7.284 · 10�7 m2 s�1

qcl = 4.17 · 106 J m�3 K�1 qcl = 4.276 · 106 J m�3 K�1 qcl = 1.8 · 106 J m�3 K�1 qcl = 1.827 · 106 J m�3 K�1

h = 5 W m�2 K�1 h = 5.083 W m�2 K�1 h = 5 W m�2 K�1 h = 5.014 W m�2 K�1

Q/S = 4 · 104 J m�2 Q/S = 4.071 · 104 J m�2 Q/S = 4 · 104 J m�2 Q/S = 4.026 · 104 J m�2

Covariance Covariance

0.2604 1.6099 1.1144 0.1305 0.0885 0.4597 0.1814 �0.0129

1.6099 10.1769 6.9852 �0.0272 0.4597 2.5109 0.9409 �0.2640

1.1144 6.9852 4.8152 0.2932 0.1814 0.9409 0.3747 �0.0099

0.1305 �0.0272 0.2932 4.8916 �0.0129 �0.2640 �0.0099 0.3976

Correlation Correlation

1.0000 0.9890 0.9952 0.1156 1.0000 0.9753 0.9962 �0.0686

0.9890 1.0000 0.9978 �0.0038 0.9753 1.0000 0.9700 �0.2642

0.9952 0.9978 1.0000 0.0604 0.9962 0.9700 1.0000 �0.0257

0.1156 �0.0038 0.0604 1.0000 0.0686 �0.2642 �0.0257 1.0000
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Table 6

Estimated values, covariance and correlation matrices (3 parameters)

3 parameters (qclel fixed): el=
ffiffiffiffi
al

p
, Q/s and h

Water Oil

Parameters (qcl = 4.17 · 106 J m�3 K�1) Parameters (qcl = 1.8 · 106 J m�3 K�1)

Nominal Estimated Nominal Estimated

al = 1.43 · 10�7 m2 s�1 al = 1.428 · 10�7 m2 s�1 al = 7.33 · 10�7 m2 s�1 al = 7.323 · 10�7 m2 s�1

h = 5 W m�2 K�1 h = 5.084 W m�2 K�1 h = 5 W m�2 K�1 h = 5.022 W m�2 K�1

Q/S = 4 · 104 J m�2 Q/S = 4.005 · 104 J m�2 Q/S = 4 · 104 J m�2 Q/S = 4.005 · 104 J m�2

Covariance Covariance

0.0058 0.0095 0.1347 0.0044 0.0092 0.0354

0.0095 0.0211 0.3117 0.0092 0.0223 0.0888

0.1347 0.3117 4.8196 0.0354 0.0888 0.3651

Correlation Correlation

1.0000 0.8609 0.8089 1.0000 0.9339 0.8879

0.8609 1.0000 0.9779 0.9339 1.0000 0.9840
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We can observe that the estimations of the thermal

diffusivities are good (for water a = 1.417 · 10�7 m2 s�1

and r

a ¼ �0.5%, for oil a = 7.284 · 10�8 m2 s�1 and

r

a ¼ �0.3%). On the other hand, the heat capacities

are estimated with a large uncertainty as given by the

covariances matrices. The comparison of the estimation

on the two fluids allows us to confirm the fact that the

estimation for water is slightly less precise than for oil.

If the value of the parameter b2 is fixed, then the re-

sults given in Table 6 are obtained. One notes a much

more precise estimation for b1 and consequently for

the thermal diffusivity (for water a = 1.428 · 10�7 m2 s�1

and r

a ¼ �0.08%, for oil a = 7.323 · 10�7 m2 s�1 and

r

a ¼ �0.06%).
Fig. 10. Conducto-radiative quadrupole model.
6. Taking into account the radiative heat transfer

In the case of a semi-transparent liquid with opaque

boundaries, which is the case here, one can model the

conducto-radiative coupling through a simple thermal

resistance. The expression of this resistance can differ

with the extinction coefficient of the material (or more

precisely with its optical thickness). For instance, in

the case of a high absorbing material, one shows that

the effect of the boundaries can be neglected compared

to the absorption within the material. In this case, the

radiative transfer can be viewed like a diffusion process.

In the literature, one talks about the diffusion approxi-

mation or the Rosseland approximation. The other case

relates to low absorbing medium or thin film model, it is

the opposite situation. In this case, one can also model

the radiative heat transfer by a simple resistance. There

is a complete decoupling between the conductive and
radiative transfers in the medium but these two transfers

remain coupled through the boundary conditions.

In all cases, the quadrupole model can be set-up very

quickly.

The heat flux / within the medium being the sum of

the conductive and radiative fluxes, the conducto-radia-

tive transfer can be modelled by a conductive quadrupole

and a radiative quadrupole in parallel. In our case, the

radiative quadrupole is a pure resistive quadrupole:

Mr ¼
Ar ¼ 1 Br ¼ Rr

Cr ¼ 0 Dr ¼ 1

	 

ð33Þ

The equivalent quadrupole is given by

M 0 ¼
A0 ¼ ARr þ B

Bþ Rr
B0 ¼ BRr

Bþ Rr

C0 ¼ CRr þ Dþ A� 2

Bþ Rr
D0 ¼ Bþ RrD

Bþ Rr

2
664

3
775 ð34Þ

It is used strictly in the same way that the pure conduc-

tive quadrupole.

Many authors [12–16] have proposed several expres-

sions for Rr versus the optical thickness of the material.

Here, Rr will be estimated and one will not try to reach
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optical quantities from this parameter. This parameter is

only introduced to provide a correction on the thermo-

gram allowing the estimation of qcl and al (Fig. 10).

The response in temperature is then a function of five

parameters:

b1 ¼ el=
ffiffiffiffi
al

p
; b2 ¼ qclel; b3 ¼ Q=S

b4 ¼ h and b5 ¼ Rr

Fig. 11 gives an example of thermograms versus Rr. One

can observe that the effect of this parameter on the ther-

mogram appears at small times, which allows us to think

that this parameter is independent of the others.
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Fig. 11. Thermograms for different values of R

r ¼

Rr=Rcd ðRcd ¼ el=klÞ. Fluid [ef = 4 mm, kf = 0.2 W m�1 K�1,

al = 1 · 10�7 m2 s�1, qcl = 2 · 106 J m�3 K�1]; walls (copper)

[ew = 1 mm, kw = 395Wm�1 K�1, aw = 1.15 · 10�4 m2 s�1, qcw =

3.43 · 106 J m�3 K�1]; h = 5Wm�2 K�1, Q/S = 4 · 104 J m�2.

Table 7

Covariance and correlation matrices

Liquid

5 parameters: el=
ffiffiffiffi
al

p
, qclel, Q/s, h and Rr

Covariance

0.1992 0.7628 0.3470 0.0073 �0.874

0.7628 3.2366 1.4193 �0.2916 �2.755

0.3470 1.4193 0.6388 �0.0220 �1.279

0.0073 �0.2916 �0.0220 0.7329 �0.161

�0.8747 �2.7550 �1.2797 �0.1611 5.808

Correlation

1.0000 0.9499 0.9726 0.0190 �0.813

0.9499 1.0000 0.9871 �0.1894 �0.635

0.9726 0.9871 1.0000 �0.0321 �0.664

0.0190 �0.1894 �0.0321 1.0000 �0.078

�0.8131 �0.6354 �0.6644 �0.0781 1.000
Fig. 12 gives an example of sensitivity curves ob-

tained from the five parameters model. Table 7 gives

the corresponding covariances and correlations matrices

for the five parameters and the four parameters (b2 being

fixed in this case) models.

In this example, R

r ¼ Rr=Rcd ¼ 10 with Rcd = el/kl. It

clearly appears that Rr is uncoupled with the others

parameters and thus could be estimated without any

difficulties.

It is possible to improve the radiative model and keep

an analytical approach, by introducing two parameters

(the optical thickness and the Planck number). For more

details, the reader can refer to Refs. [17–19].
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Fig. 12. Sensitivity curves.

4 parameters (qclel fixed): el=
ffiffiffiffi
al

p
, Q/s, h and Rr

Covariance

7

0 0.0195 0.0125 0.0760 �0.2254

7 0.0125 0.0164 0.1059 �0.0716

1 0.0760 0.1059 0.7066 �0.4093

1 �0.2254 �0.0716 �0.4093 3.4630

Correlation

1

4 1.0000 0.6981 0.6484 �0.8685

4 0.6981 1.0000 0.9841 �0.3005

1 0.6484 0.9841 1.0000 �0.2617

0 �0.8685 �0.3005 �0.2617 1.0000
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7. Implementation

7.1. Experimental bench

Following the preceding studies, one defines the

characteristics of the measuring cell as follows:

• walls in copper or stainless steel (1 mm thick)

• thickness of the fluid (3 mm/4.5 mm)

• height of the cell (100 mm)

• inner diameter (24 mm)

The tubes constituting the walls are embedded in two

pieces in Teflon allowing to ensure the concentricity

and the sealing of the cell (see Fig. 13). The cell is placed

on a frame surrounded by a metallic shield and an insu-

lated bell to limit the heat exchange by convection and

radiation with the surroundings.

The pulsed stimulation is produced by a moving

Flashlamp, which is placed inside the measurement cell

for the stimulation. The duration of the pulse is a few

milliseconds and the power is about 1000 J. The temper-

ature measurement is carried out via welded Chromel–

Alumel thermocouples (120 lm diameter) with sepa-

rated contacts. The acquisition system is composed

either of a measurement amplifier and a numerical oscil-
Fig. 13. Measurement cell.
loscope, or of an Analog/Digital acquisition card and a

conditioning module. A computer allows the automatic

treatment of the thermogram.
7.2. Example of experimental results

As shown before, water has been chosen as a test

fluid because it represents the most unfavourable case

for this kind of measurement.

In practice, the magnification factor K of the experi-

mental device (sensitivity of the thermocouples, ampli-

fier, oscilloscope), which consists of multiplying the

measured signal (a temperature) to obtain a potential

that can be measured through an oscilloscope is ill-

known. Thus, the parameter Q/S is replaced by KQ/S

in the theoretical model. For practical reasons (estima-

tion with three parameters for instance), the experimen-

tal thermogram is normalised by its apparent maximum

Umax. Thus, the estimated parameter in the four para-

meters method is: KQ/S Æ Umax.

Fig. 14 gives the results we obtained by the four

parameters model and the corresponding variances are

given in Table 8. As planed by the theoretical study,

one can observe that the estimation of the specific heat

(qc) is not good.
Fig. 15 gives the results obtained by the three param-

eters model (i.e. qc being fixed to its nominal value

4.18 · 106 J m�3 K�1) and in Table 8 the corresponding

variances.

One can note that the variances are much smaller

than in the case with four parameters, which character-

izes a better parameters estimation, particularly for the

thermal diffusivity.
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Fig. 14. Estimation on an experimental thermogram (water)—4

parameters model.



Table 8

Covariance and correlation matrices

Water

4 parameters: el=
ffiffiffiffi
al

p
, qclel, Q/s and h 3 parameters (qclel fixed): el=

ffiffiffiffi
al

p
, Q/s and h

Covariance Covariance

0.1453 0.6414 0.3682 0.0941 0.0039 0.0039 0.0557

0.6414 2.9094 1.6528 0.1704 0.0039 0.0064 0.0959

0.3682 1.6528 0.9452 0.1949 0.0557 0.0959 1.5606

0.0941 0.1704 0.1949 1.6610

Correlation Correlation

1.0000 0.9866 0.9936 0.1915 1.0000 0.7734 0.7111

0.9866 1.0000 0.9967 0.0775 0.7734 1.0000 0.9612

0.9936 0.9967 1.0000 0.1556 0.7111 0.9612 1.0000

0.1915 0.0775 0.1556 1.0000
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Fig. 15. Estimation on an experimental thermogram (water)—3

parameters model.
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8. Conclusion

We describe in this paper the whole steps allowing to

set up a procedure for the estimation of the thermophys-

ical properties of liquids by a flash method. A sensitivity

study on the parameters enabled first to determine an

optimum thickness for the walls of the cell. The com-

plete study of the problem of parameters estimation

shows that for most liquids, it is possible to measure

by this method two main properties of the fluid (a and

qc). We also showed that one could remove the effect

of the natural convection by a judicious choice of the

measuring cell extension and take into account the radi-

ative effects in the case of semi-transparent liquids

through an additional parameter, the radiative resis-

tance. Finally, experimentation was implemented. The

first measurements obtained on water showed the rele-

vance of the theoretical study.
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Appendix A

Let us consider the following parameters substitu-

tion:

ba ¼ faðb1; b2Þ
bb ¼ fbðb1; b2Þ

�

The reduced sensitivities X 

a and X 


b to the new parame-

ters ba and bb are function of the reduced sensitivities X 

1

and X 

2 to b1 and b2 through the following relations:

X 

1 X 


2b c ¼ X 

a X 


bb c J½ �


with

½J �
 ¼
a
1 ¼

b1

ba

ofa
ob1

a
2 ¼
b2

ba

ofa
ob2

b
1 ¼
b1

bb

ofb
ob1

b
2 ¼
b2

bb

ofb
ob2

2
664

3
775

That is

X 

1 ¼ a
1X



a þ b
1X



b

X 

2 ¼ a
2X



a þ b
2X



b

�

The reduced covariance matrix for the parameters

(b1, b2) is given by

Varðb1; b2Þ ¼ r2
nðX 
tX 
Þ�1 ¼ r2

n

P
X 
2

1

P
X 


1X


2P

X 

1X



2

P
X 
2

2

" #�1

¼ r2
n

DðX 

1X



2Þ

P
X 
2

2 �
P

X 

1X



2

�
P

X 

1X



2

P
X 
2

1

" #
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with

DðX 1;X 2Þ ¼
X

X 
2
1 


X
X 
2

2 �
X

X 

1X



2

� �2

and

X
X 


j ¼
X
i

X 

j ðti; bjÞ

Thus,

Varðb1Þ ¼
r2
n

DðX 

1;X



2Þ

X
X 
2

2

Varðb2Þ ¼
r2
n

DðX 

1;X



2Þ

X
X 
2

1

and

Covðb1; b2Þ ¼ � r2
n

DðX 

1;X



2Þ

X
X 


1X


2

The variance of the parameter ba is given by

VarðbaÞ ¼ a
21 Varðb1Þ þ a
22 Varðb2Þ þ 2a
1a


2 Covðb1; b2Þ

Substituting Var(b1), Var(b2) and Cov(b1, b2) by their

expressions:

VarðbaÞ ¼
r2
n

DðX 

1;X



2Þ

a
21
X

X 
2
2 þ a
22

X
X 
2

1

�

�2a
1a


2

X
X 


1X


2

�

¼ r2
n

DðX 

1;X



2Þ

X
ða
21 X 
2

2 þ a
21 X 
2
1 � 2a
1a



2X



1X



2Þ

¼ r2
n

DðX 

1;X



2Þ

X
ða
1X 


2 � a
2X


1Þ

2

As a
1X


2 � a
2X



1 ¼ ða
1b
2 � a
2b



1ÞX 


b, we obtain

VarðbaÞ ¼
r2
n

DðX 

1;X



2Þ
ða
1b
2 � a
2b



1Þ

2 

X

X 
2
b

Minimizing X 

b is thus equivalent to minimize Var(ba).

Application:
ba ¼ faðb1; b2Þ ¼ bm

1 bn
2

bb ¼ fbðb1; b2Þ ¼ b2

�

In our particular case, the reduced Jacobian matrix is

equal to

½J �
 ¼
a
1 ¼ m a
2 ¼ n

b
1 ¼ 0 b
2 ¼ 1

	 

and yields

VarðbaÞ ¼
r2
n 
 m2

DðX 

1;X



2Þ


X

X 
2
b
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